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The dynamics and spectra of the quasi-diagonal direct interaction approximation
(QDIA) closure for inhomogeneous two-dimensional turbulence over mean (single
realization) topography are compared with results from direct numerical simulations
(DNS). A more efficient version of the closure, termed the cumulant update QDIA
(CUQDIA), has also been formulated and tested. Studies are performed for a range
of resolutions, for large scale Reynolds numbers between very low (RL < 1) and
moderate (RL � 300) and for wide ranges of topographic spectra and initial mean
field and transient spectra. The QDIA-type closures are shown to be computationally
tractable for general inhomogeneous flows, particularly in cumulant update form, and
to perform extremely well when the turbulence is weak. At low (RL � 60) to moderate
(RL � 300) Reynolds numbers the presence of significant amplitude small-scale mean
fields and topography reduces the under-estimation of small-scale transient kinetic
energy that is characteristic of the Eulerian direct interaction approximation (DIA).
A regularized version of the CUQDIA closure (RCUQDIA) in which interactions
are localized in wavenumber space, depending on specified cut-off ratios, has also
been tested at moderate Reynolds number for cases when the small-scale mean
fields and topography are weak. Excellent agreement has been found between the
RCUQDIA closure and DNS results for turbulent flows with properties broadly
similar to atmospheric spectra.

1. Introduction
The recent development of the quasi-diagonal direct interaction approximation

closure (QDIA, Frederiksen 1999) offers the prospect of a computationally tractable
means for the direct calculation of the statistics of inhomogeneous turbulence
over topography. The QDIA is a generalization of the class of direct interaction
approximation (DIA) theories initially developed by Kraichnan (1958, 1959; see also
Leslie 1973) for isotropic turbulence. The DIA, so-called because it only takes into
account directly interacting modes, has also been derived using renormalization
techniques based on diagrammatic (Wyld 1961; Lee 1965), functional operator
(Martin, Siggia & Rose 1973; Phythian 1975; Carnevale & Martin 1982) and path
integral (Jensen 1981) formalisms.

A particular motivation for developing the QDIA closure (Frederiksen 1999) was
to provide a theoretical basis for the development of subgrid scale parameterizations
of eddy viscosity, stochastic backscatter and particularly the eddy-topographic force
for inhomogeneous turbulent flows over topography. The eddy-topographic force
describes the interaction of subgrid scale eddies with retained scale topography
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and is essential for obtaining realistic ocean circulations (Holloway 1992; Alvarez
et al. 1994). The eddy-topographic force also appears to be a missing ingredient in
atmospheric general circulation models (Frederiksen, Dix & Davies 2003). However,
previous attempts at a formulation were based on heuristic arguments (Holloway
1992).

Closure theories have previously been used for developing subgrid scale
parameterizations for eddy viscosity and stochastic backscatter in the case of three-
dimensional (e.g. Kraichnan 1976; Rose 1977; Leith 1990; Chasnov 1991; Schilling &
Zhou 2002) and two-dimensional (e.g. Frederiksen and Davies 1997) homogeneous
turbulence. For example, Frederiksen and Davies find that large eddy simulations
(LES) incorporating eddy-damped quasi-normal Markovian (EDQNM) and DIA
closure based subgrid scale parameterizations are able to maintain the same large-scale
kinetic energy spectra with varying resolutions as higher resolution direct numerical
simulations (DNS) of two-dimensional turbulence. Closure based dynamical subgrid
scale parameterizations have also produced significant improvements in the circulation
and spectra of atmospheric general circulation models (Frederiksen et al. 2003).

Closure theory has also traditionally been used to study the statistics of the
predictability of homogeneous turbulent fluid flows in both two and three dimensions
(Kraichnan 1970; Leith 1971, 1974; Leith & Kraichnan 1972). It allows the direct
study of the statistics of error growth and unlike studies based on the direct numerical
simulation of the primitive equations is unencumbered by issues of adequately
sampling the initial error statistics (Lorenz 1969; Toth & Kalnay 1997). Of particular
importance is the role of emergent coherent vorticies in quasi-two-dimensional
turbulence (McWilliams 1984; Boffetta et al. 1997) that can have a profound effect on
the predictability of geophysical flows, as evident in studies of atmospheric blocking
events (see Frederiksen, Collier & Watkins 2002 and references therein). A closure
model that can accurately capture the dynamics and predictability of the mean and
transient statistics of general inhomogeneous flows would appear to be an important
tool for the study of these types of phenomena.

The first successful attempt to incorporate random topography into a closure model
for homogeneous turbulence was due to Herring (1977) dealing with ensembles of
topography with zero mean value. Herring (1977) and Holloway (1978) compared
both DIA and test field model (TFM) methods for the problem of two-dimensional
rotating turbulent flow above a random topography. The DIA and extended TFM
were found to agree qualitatively with some significant quantitative disagreement. The
importance of studies of this kind, apart from developing great insight into how the
statistical properties of random topography determine the spectra of transient vorticity
variance, was that they enabled the identification of various spectral subranges with
markedly different dynamics and showed how these subranges were influenced by the
strength of the topographic amplitude relative to the convective nonlinearity (Herring
1977). However, real atmospheric and other geophysical and engineering flows tend
to be inhomogeneous at the larger scales (Carnevale et al. 1995).

In order to examine the effect of mean topography on the structures of the
inhomogeneous flows a closure theory based on single realization mean topography is
required. Kraichnan (1972) formulated the DIA and TFM for general inhomogeneous
turbulence interacting with mean-fields and demonstrated that the general non-
diagonal form of the inhomogeneous DIA was not computationally tractable and that
some form of diagonalization was required. For Boussinesq convection Kraichnan
(1964 b) developed a diagonalizing closure approximation in the special case of a
mean horizontally averaged temperature field with zero fluctuations. Frederiksen
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(1999) developed a quasi-diagonal DIA closure for general fields with mean and
fluctuating components and applied it to inhomogeneous turbulence and mean flows
over topography. The QDIA extends the family of non-Markovian statistical closures
(DIA, Kraichnan 1959; self consistent field theory (SCFT), Herring 1965; local energy
transfer theory (LET), McComb 1974; McComb, Filipiak & Shanmugasundaram
1992; McComb & Quinn 2003) to incorporate inhomogeneous turbulent flow over
topography. These closure theories contain no arbitrary parameters but for two-
dimensional turbulence have small-scale systematic biases including underestimation
of small-scale kinetic energy at moderate to high Reynolds numbers (Herring
et al. 1974; Frederiksen & Davies 2000). In particular, the Eulerian DIA produces
an inertial range power law at high Reynolds number of k−5/2, while the enstrophy
cascading inertial range power law for two-dimensional turbulence is k−3 (Kraichnan
1964a; Herring et al. 1974).

The small-scale systematic biases of the Eulerian DIA closure arise from the fact
that while the propagators, the cumulant and response functions, are renormalized
there is no renormalization of the terms associated with the non-direct interactions.
Martin et al. (1973) established the correct properties of these so-called vertex terms
which in renormalized form are responsible for all information contained in the
higher order cumulants. Kraichnan (1964c) showed that the physical foundation
of the failure of the Eulerian DIA to yield the correct inertial ranges is due to
its inability to distinguish between convection and intrinsic distortion effects. This
means that decay times of two-time cumulant and response functions are determined
incorrectly by the energy containing range rather than by local excitation levels.

A regularized form of the DIA (RDIA) containing a specified ‘cut-off’ parameter
α which acts to localize the eddy–eddy interactions in wavenumber space has been
found effective in ameliorating the small-scale deficiencies of the DIA for isotropic
homogeneous turbulence (Frederiksen & Davies 2003). The physical justification
for the regularization approach is the consistency with the Kolmogorov hypotheses
(Kraichnan 1964c, 1977) and the choice of cutoff parameter seems to be, as observed
in numerical experiment, almost universal (Frederiksen & Davies 2003). The RDIA
corresponds to a one-parameter family of two-time non-Markovian closures just as
the EDQNM (Orszag 1970, 1973; Leith 1971; Bowman, Krommes & Ottaviani 1993;
Frederiksen & Davies 1997), and realizable TFM (Bowman & Krommes 1997) are
one-parameter single-time Markovian models. Frederiksen & Davies (2003) show
that the RDIA is in excellent agreement with DNS for two-dimensional isotropic
turbulence (with α =6) for large-scale Reynolds numbers up to � 4000 and compare
its performance with other closures including the TFM and quasi-Lagrangian closures
(Herring & Kraichnan 1979; Gotoh, Kaneda & Bekki 1988).

The purpose of this paper is firstly to examine the performance of the QDIA
closure compared with direct numerical simulation (DNS) of the barotropic vorticity
equation for a range of resolutions (C3 to C64), Reynolds numbers (up to RL = 300)
and topographic amplitudes. The DNS and QDIA closure are both based on discrete
wavenumber formulations (Frederiksen & Davies 2000) allowing unambiguous
identification of intrinsic differences, although at some additional computational
expense compared with continuous wavenumber formulations of the closure models.
Secondly, a variant which employs a formal cumulant update procedure (CUQDIA),
thereby enabling long run times, is formulated. The CUQDIA allows a significant
gain in computational efficiency over the standard closure through the periodic
stopping of the time integrations and calculating the two- and three-point cumulant
(non-Gaussian cumulant) terms which are then used in the new initial conditions.
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Finally, the regularization procedure (Frederiksen & Davies 2003) is generalized for
the QDIA closure to localize eddy–mean field and eddy–topographic interactions, as
well as eddy–eddy interactions, in the two-time cumulant and response functions.

In § 2 we introduce the basic equations for two-dimensional turbulent flow over
topography. Then in § 3 and appendix A we introduce a method for approximating
the time-history integrals which results in what we call the cumulant update QDIA
(CUQDIA). In § 4 a discussion of the regularization procedure is presented after
which the diagnostic quantities used in the numerical studies are defined in § 5.
Section 6 briefly outlines pertinent details about the numerical methods employed
to solve the closure equations as well as the barotropic vorticity equation. Detailed
numerical calculations comparing the QDIA, CUQDIA and regularized CUQDIA
(RCUQDIA) closures with DNS for a wide variety of topographic spectra and initial
mean and transient spectra are presented in § § 7–10. In § 7 we compare the evolution
of the modal enstrophy components for both the QDIA and CUQDIA closures
with DNS; we use a circular truncation with 1 � k � kmax, where kmax = 3 (C3) and
examine forced dissipative, viscous decaying and inviscid unforced flows. Then in § 8
the effectiveness of the quasi-diagonal approximation is demonstrated for very low
large-scale Reynolds number (typically< 1) flow at resolutions C48 and C64. At such
low Reynolds number the effectiveness of the quasi-diagonal approximation can be
examined unencumbered by any DIA deficiencies associated with strong turbulence.
Sections 9 and 10 examine the CUQDIA closure at low to moderate Reynolds number.
The effect of the strength of the small-scale mean field and topographic amplitude
on the accuracy of the closure is investigated for turbulent flow at C48 and C64
resolutions. We investigate the performance of the CUQDIA closure in reproducing
evolved DNS kinetic energy, palinstrophy, large-scale Reynolds number and skewness.
In § 10, the performance of the RCUQDIA closure is also compared with both DNS
and CUQDIA results for two particular choices of cutoff parameters. Finally in § 11
we discuss the implications of our results and summarize our conclusions.

2. Two-dimensional flow on a f -plane
The evolution of two-dimensional flow over a mean topography on a periodic

f -plane (0 � x � 2π), (0 � y � 2π) is described by the barotropic vorticity equation

∂ζ

∂t
= −J (ψ, ζ + h) + ν0∇2ζ + f 0, (2.1a)

where f 0 is the bare forcing and ν0 the bare viscosity, and

J (ψ, ζ ) =
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
(2.1b)

is the Jacobian. The vorticity is the Laplacian of the streamfunction, i.e. ζ = ∇2ψ . We
assume that the variation in the topography (�H ) is small, and define h to be the
scaled spatial variation of the height of the topography relative to the total depth. The
barotropic vorticity equation can be made non-dimensional by introducing suitable
length and time scales.

The vorticity equation, and subsequent closure equations, are most conveniently
analysed and solved in spectral space. We expand each of the functions in a Fourier
series; for example

ζ (x, t) =
∑

k

ζk(t) exp(ik · x), (2.2a)
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where

ζk(t) =
1

(2π)2

∫ 2π

0

d2x ζ (x, t) exp(−ik · x) (2.2b)

and x = (x, y), k = (kx, ky). The spectral vorticity equation with a more general
dissipation where ν0 → ν0(k) then takes the form(

∂

∂t
+ ν0(k)k2

)
ζk(t)

=
∑

p

∑
q

δ(k + p + q)[K(k, p, q)ζ− pζ−q + A(k, p, q)ζ− ph−q] + f 0
k , (2.3)

where k = (k2
x + k2

y)
1/2 and ζ−k is conjugate to ζk. The interaction coefficients are

defined by relationships

A(k, p, q) = −(pxqy − pyqx)/p
2, (2.4a)

K(k, p, q) = 1
2
[A(k, p, q) + A(k, q, p)]

= 1
2
(pxqy − pyqx)(p

2 − q2)/p2q2, (2.4b)

where

δ(k + p + q) =

{
1 if k + p + q = 0,

0 otherwise
(2.4c)

and we note that

K(k, p, q) + K( p, q, k) + K(q, k, p) = 0. (2.4d)

For the purposes of this paper the topography is represented in the form

hk = |hk| × (cos θk + i sin θk) (2.5)

with θk a fixed specified random phase. For an ensemble of flows satisfying (2.3), we
may express the vorticity ζk and forcing f 0

k in terms of their ensemble means, denoted
by 〈〉, and the deviations from the ensemble mean, denoted by ˆ :

ζk = 〈ζk〉 + ζ̂k, (2.6a)

f 0
k =

〈
f 0

k

〉
+ ˆf 0

k . (2.6b)

The equations for the ensemble mean and the deviation can then be written in the
form: (

∂

∂t
+ ν0(k)k2

)
〈ζk〉 =

∑
p

∑
q

δ(k + p + q)K(k, p, q)[〈ζ− p〉〈ζ−q〉 + C− p,−q(t, t)]

+
∑

p

∑
q

δ(k + p + q)A(k, p, q)〈ζ− p〉h−q +
〈
f 0

k

〉
(2.7a)(

∂

∂t
+ ν0(k)k2

)
ζ̂k =

∑
p

∑
q

δ(k + p + q)K(k, p, q)

× [〈ζ− p〉ζ̂−q + ζ̂− p〈ζ−q〉 + ζ̂− pζ̂−q − C− p,−q(t, t)]

+
∑

p

∑
q

δ(k + p + q)A(k, p, q)ζ̂− ph−q + f̂ 0
k. (2.7b)

Here the two-point cumulant is defined by

C− p,−q(t, s) = 〈ζ̂− p(t)ζ̂−q(s)〉. (2.8)
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3. QDIA and cumulant update QDIA closure equations
The quasi-diagonal DIA closure equations (QDIA, Frederiksen 1999) were derived

on the basis that the perturbation fields ζ̂k have, to lowest order, a multivariate
Gaussian distribution. This allows the representation of the off-diagonal two-point
cumulant and response functions in terms of the diagonal elements. The resulting
equations for the mean field, two-point cumulant and response functions are
expressed entirely in terms of the diagonal elements of the two-point cumulant
and response functions and are computationally much more efficient than the general
inhomogeneous closure equations (Kraichnan 1972). However, the QDIA like other
non-Markovian closure theories, may be computationally expensive for long time-
integrations because of the time-history integrals which need to be evaluated between
the initial and final times. This makes it desirable to implement a generalization of
the cumulant update restart procedure used by Rose (1985), Frederiksen, Davies &
Bell (1994) and Frederiksen & Davies (2000, 2003).

Our cumulant update restart procedure consists of integrating the QDIA forward
for a time, calculating the two- and three-point terms at this time and then using
these in the new initial conditions for further integration. In principle, knowledge
of all higher order cumulants should be available, but to be consistent with the
approximations of the QDIA, only the two- and three-point cumulants are needed.
The crucial information contained in the three-point term is that of the non-Gaussian
cumulants accumulated in the time-history integrals. The three-point cumulant is
effectively the homogeneous component of the closure equations while the two-point
terms arise due to the inhomogeneity produced by the presence of topography and
mean field. In Appendix A we present a derivation of the two-point restart terms
while the method of deriving the three-point terms follows that used by Rose (1985) &
Frederiksen et al. (1994).

The basis of the QDIA closure is the representation of the off-diagonal elements of
the two- and three-point cumulant and response functions in terms of the diagonal
elements. Following Frederiksen (1999) we have

Ck,−l (t, t
′) =

∫ t

t0

ds Rk(t, s)Cl (s, t
′)
[
A(k, −l, l − k)h(k−l) + 2K(k, −l, l − k)

〈
ζ(k−l)(s)

〉]

+

∫ t ′

t0

ds R−l (t
′, s)Ck(t, s)

[
A(−l, k, l −k)h(k− l)

+ 2K(−l, k, l −k)
〈
ζ(k− l)(s)

〉]
+ Rk(t, t0)R−l (t

′, t0)K̃
(2)
k,−l (t0, t0), (3.1a)

where K̃
(2)
k,−l (t0, t0) is the contribution to the off-diagonal covariance matrix at initial

time t0. The treatment of the three-point cumulant is the same as in the DIA closure
for homogeneous turbulence (Kraichnan 1959; Frederiksen & Davies 2000):

〈
ζ̂−l (t)ζ̂(l−k)(t)ζ̂k(t

′)
〉

= 2

∫ t ′

t0

ds K(k, −l, l − k)C−l (t, s)C(l−k)(t, s)Rk(t
′, s)

+ 2

∫ t

t0

ds K(−l, l − k, k)R−l (t, s)C(l−k)(t, s)Ck(t
′, s)

+ 2

∫ t

t0

ds K(l − k, −l, k)R(l−k)(t, s)C−l (t, s)Ck(t
′, s)

+ R−l (t, t0)R(l−k)(t, t0)Rk(t, t0)K̃
(3)
−l,(l−k),k(t0, t0, t0), (3.1b)
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where K̃
(3)
−l,(l−k),k(t0, t0, t0) allows for non-Gaussian initial conditions. Similarly, the

response function is given by

Rk,l (t, t
′) =

∫ t

t ′
ds Rk(t, s)Rl (s, t

′)

×
[
A(k, −l, l − k)h(k−l) + 2K(k, −l, l − k)

〈
ζ(k−l)(s)

〉]
. (3.1c)

Here

Rk,l (t, t
′) =

〈
δζ̂k(t)

δf̂ 0
l (t

′)

〉
, (3.2a)

and we use the abbreviations

Ck(t, t
′) = Ck,−k(t, t

′); Rk(t, t
′) = Rk,k(t, t

′). (3.2b)

Then, using (3.1a) in (2.7a), the mean-field equation takes the form(
∂

∂t
+ ν0(k)k2

)
〈ζk〉 =

∑
p

∑
q

δ(k + p + q)[K(k, p, q)〈ζ− p(t)〉〈ζ−q(t)〉

+ A(k, p, q)〈ζ− p(t)〉h−q] −
∫ t

t0

ds ηk(t, s)〈ζk(s)〉

+ hk

∫ t

t0

ds χk(t, s) +
〈
f 0

k (t)
〉

+
∑

p

∑
q

δ(k + p + q)

× K(k, p, q)K̃ (2)
− p,−q(t0, t0)R− p(t, t0)R−q(t, t0). (3.3)

Here, the nonlinear damping

ηk(t, s) = −4
∑

p

∑
q

δ(k+ p+q)K(k, p, q)K(− p, −q, −k)R− p(t, s)C−q(t, s), (3.4a)

measures the interaction of transient eddies with the mean field while

χk(t, s) = 2
∑

p

∑
q

δ(k + p + q)K(k, p, q)A(− p, −q, −k)R− p(t, s)C−q(t, s), (3.4b)

measures the strength of the interaction of transient eddies with the topography in
(3.3).

The equation for the diagonal two-time two-point cumulant is obtained by
multiplying (2.7b) by ζ̂−k(t

′) and using (3.1a) and (3.1b):(
∂

∂t
+ ν0(k)k2

)
Ck(t, t

′) =Nk(t, t
′), (3.5)

where

Nk(t, t
′) =

∫ t ′

t0

ds
[
Sk(t, s) + Pk(t, s) + F 0

k (t, s)
]
R−k(t

′, s) −
∫ t

t0

ds [ηk(t, s) + πk(t, s)]

× C−k(t
′, s) +

∑
p

∑
q

δ(k + p + q)K(k, p, q)K̃ (3)
−q,− p,−k(t0, t0, t0)

× R−q(t, t0)R− p(t, t0)R−k(t
′, t0) +

∑
p

∑
q

δ(k + p + q)[(A(k, p, q)

+ A(k, q, p))〈ζ−q(t)〉 + A(k, p, q)h−q]

× K̃
(2)
− p,−k(t0, t0)R− p(t, t0)R−k(t

′, t0). (3.6)
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Here

F 0
k (t, s) =

〈
f̂ 0

k(t)f̂
0∗
k (s)

〉
(3.7a)

is the variance of the random forcing,

Sk(t, s) = 2
∑

p

∑
q

δ(k + p + q)K(k, p, q)K(−k, − p, −q)C− p(t, s)C−q(t, s), (3.7b)

is the nonlinear noise and

Pk(t, s) =
∑

p

∑
q

δ(k+ p+q)C− p(t, s)[(A(k, p, q)+A(k, q, p))〈ζ−q(t)〉+A(k, p, q)h−q]

× [(A(−k, − p, −q) + A(−k, −q, − p))〈ζq(s)〉 + A(−k, − p, −q)hq], (3.7c)

πk(t, s) = −
∑

p

∑
q

δ(k+ p+q)R− p(t, s)[(A(k, p, q)+A(k, q, p))〈ζ−q(t)〉+A(k, p, q)h−q]

× [(A(− p, −k, −q) + A(− p, −q, −k))〈ζq(s)〉 + A(− p, −k, −q)hq], (3.7d)

are noise and dissipation terms associated with eddy-mean field and eddy-topographic
interactions. In these latter terms we have used (2.4b) to express the K(k, p, q)
interaction coefficient in terms of A(k, p, q) and A(k, q, p) for later convenience when
we consider the regularization of the interaction coefficients. Equations (3.5) and (3.6)
generalize the QDIA closure of Frederiksen (1999) by including initial contributions
to the off-diagonal covariance matrix (K̃ (2)

− p,−k(t0, t0)) and to non-Gaussian initial

conditions associated with the three-point function (K̃ (3)
−q,− p,−k(t0, t0, t0)).

The equation for the diagonal response function is obtained by using (3.1c) as in
Frederiksen (1999):(

∂

∂t
+ ν0(k)k2

)
Rk(t, t

′) = −
∫ t

t ′
ds [ηk(t, s) + πk(t, s)] Rk(s, t

′), (3.8)

with Rk(t, t) = 1 and for t < t ′ we have Rk(t, t
′) = 0. The equation for the diagonal

single-time two-point cumulant is(
∂

∂t
+ 2ν0(k)k2

)
Ck(t, t) = 2Re Nk(t, t) (3.9a)

since

∂Ck(t, t)

∂t
= lim

t ′→t

(
∂Ck(t, t

′)

∂t
+

∂Ck(t, t
′)

∂t ′

)
(3.9b)

and Ck(t
′, t) = C−k(t, t

′) = C∗
k(t, t

′).
These QDIA closure equations, including off-diagonal and non-Gaussian initial

conditions may then be used to periodically truncate the potentially long time-history
integrals and obtain a more efficient closure scheme which we call the cumulant
update QDIA (CUQDIA). The method relies on the fact that the essential information
contained in the time-history integrals is the off-diagonal two-point cumulant and the
three-point cumulant. Suppose we integrate the QDIA closure equations from the
initial time t0 = 0 up to a time t ′ = t = T . Then the off-diagonal two-point cumulant
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and the three-point cumulant may be calculated through the relationships

K̃
(2)
− p,−k(T , T ) = K

(2)Dyn

− p,−k (T , T ) + K̃
(2)
− p,−k(t0, t0)R− p(T , t0)R−k(T , t0), (3.10a)

K̃
(3)
−q,− p,−k(T , T , T ) = K

(3)Dyn

−q,− p,−k(T , T , T )

+ K̃
(3)
−q,− p,−k(t0, t0, t0)R−q(T , t0)R− p(T , t0)R−k(T , t0). (3.10b)

Here

K
(2)Dyn

− p,−k (t, t
′) =

∫ t

t0

ds R− p(t, s)C−k(t
′, s)

[
A(− p, −k, k + p)h(−k− p)

+ (A(− p, −k, k + p) + A(− p, k + p, −k))
〈
ζ(−k− p)(s)

〉]
+

∫ t ′

t0

ds R−k(t
′, s)C− p(t, s)

[
A(−k, − p, k + p)h(−k− p)

+ (A(−k, − p, k + p) + A(−k, k + p, − p))
〈
ζ(−k− p)(s)

〉]
, (3.11a)

∑
p

∑
q

δ(k + p + q)K(k, p, q)K (3)Dyn

−q,− p,−k(t, t, t
′) =

∫ t ′

t0

ds Sk(t, s)R−k(t
′, s)

−
∫ t

t0

ds ηk(t, s)C−k(t
′, s). (3.11b)

and K (2)Dyn also satisfies the sum rules∑
p

∑
q

δ(k + p + q)K(k, p, q)K (2)Dyn
− p,−q (t, t) = −

∫ t

t0

ds ηk(t, s)〈ζk(s)〉

+ hk

∫ t

t0

ds χk(t, s) (3.11c)

and ∑
p

∑
q

δ(k + p + q)[(A(k, p, q) + A(k, q, p))〈ζ−q(t)〉 + A(k, p, q)h−q]

× K̃
(2)Dyn

− p,−k (t, t
′) =

∫ t ′

t0

ds Pk(t, s)R−k(t
′, s) −

∫ t

t0

ds πk(t, s)C−k(t
′, s). (3.11d)

Equations (3.10) and (3.11) follow from consistency with (3.3), (3.5) and (3.6).
The procedure may then be performed as often as required by simply replacing
K̃

(2)
− p,−k(t0, t0), K̃

(2)
− p,−q(t0, t0) and K̃

(3)
−q,− p,−k(t0, t0, t0) with the quantities K̃

(2)
− p,−k(T , T ),

K̃
(2)
− p,−q(T , T ) and K̃

(3)
−q,− p,−k(T , T , T ).

The QDIA closure equations conserve kinetic energy and potential enstrophy (in
the absence of forcing and dissipation) and guarantee realizability for the diagonal
elements of the covariance matrices (Frederiksen 1999).

4. Regularization
The Eulerian DIA (for homogeneous isotropic turbulence) produces kinetic energy

spectra that closely match those of DNS in the energy containing range of large
scales (e.g. Herring et al. 1974; Frederiksen & Davies 2003). However, at high
Reynolds number the Eulerian DIA results in power laws that differ slightly from the
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Kolmogorov inertial range power laws. Kraichnan (1964a) showed that this problem
is due to the fact that the DIA does not distinguish between convection effects and
intrinsic distortion effects. He also examined a number of ways of modifying the DIA
to yield the Kolmogorov spectra. One method, which has recently been examined
by Frederiksen & Davies (2003) for two-dimensional isotropic turbulence, consists of
zeroing the interaction coefficient in the two-time cumulant and response function
equations unless the triad of interacting wave vectors satisfy certain inequalities
that localize the transfers and that depend on a cut-off ratio α (defined by (4.1a)).
Frederiksen & Davies (2003) called this method regularization because it removes
the low wavenumber divergence of the DIA response function when a Kolmogorov
spectrum is assumed (Leslie 1973; McComb 1990).

The RDIA approximates the inclusion of non-direct interactions; it corresponds
to a simple empirical vertex renormalization depending on the parameter α, and in
this respect is similar to the TFM (Kraichnan 1971a, b; Herring 1977). However,
the RDIA correctly represents the two-time cumulant properties in contrast to the
single-time Markovian TFM. Frederiksen & Davies (2003) compared the RDIA with
ensemble-averaged direct numerical simulations (DNS) for decaying two-dimensional
turbulence at large-scale Reynolds numbers up to 4000. They considered discrete
wavenumber representations relevant to flows on the doubly periodic plane, focusing
on the evolved kinetic energy, enstrophy, palinstrophy and enstrophy flux spectra as
well as skewness evolution. All diagnostics were shown to compare well with DNS
for α =6 which was found to be almost universal.

In the case of isotropic turbulence (Frederiksen & Davies 2003), the regularization
consists of zeroing the interaction coefficient K(k, p, q) (2.4b) if p <k/α or q < k/α

in the two-time cumulant and response function equations of the DIA closure. That
is, in these two-time equations K(k, p, q) is replaced by

Θ

(
p − k

α1

)
Θ

(
q − k

α1

)
K(k, p, q), (4.1a)

where α1 = α. The interaction coefficient is unchanged in the single-time cumulant
equation. In the present case of inhomogeneous turbulence over topography we also
need to consider the A(k, p, q) interaction coefficient. This is replaced by

Θ

(
p − k

α2

)
Θ

(
q − k

α2

)
A(k, p, q). (4.1b)

in the two-time cumulant and response function equations while K(k, p, q) is again
replaced by the expression in (4.1a). We shall explore cases when α1 and α2 are
different and when they take the same value. Again, the interaction coefficients are
unchanged in the single-time cumulant equation and in the mean-field equation.

The regularization of the A(k, p, q) interaction coefficient results in a localization
of the eddy-mean field and eddy-topographic transfers, just as the regularization of
the K(k, p, q) interaction coefficient ensures that transfer from large to small scales
proceeds by a cascade that is local in wavenumber (Kraichnan 1964c). We expect, and
confirm, that at reasonable Reynolds numbers the localization of the eddy-mean field
and eddy-topographic transfers, as well as of the eddy-eddy transfers, is necessary for
the QDIA spectra to compare closely with DNS results at high wavenumbers.
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5. Diagnostics
In the sections that follow prognostic DNS and closure equations are analysed

using the following diagnostics for the kinetic energy and palinstrophy

E(t) = 1
2

∑
k

[Ck(t, t) + 〈ζk(t)〉〈ζ−k(t)〉]/k2, (5.1a)

P(t) = 1
2

∑
k

[Ck(t, t) + 〈ζk(t)〉〈ζ−k(t)〉]k2. (5.1b)

The components defined in (5.1) are used to calculate band-averaged spectra defined
as

E(ki, t) = 1
2

∑
k∈S

[Ck(t, t) + 〈ζk(t)〉〈ζ−k(t)〉]/k2, (5.2a)

P (ki, t) = 1
2

∑
k∈S

[Ck(t, t) + 〈ζk(t)〉〈ζ−k(t)〉]k2. (5.2b)

The set S is defined as

S =
[
k|ki = Int

[
k + 1

2

]]
(5.3)

where the subscript i indicates that the integer part is taken in (5.3) so that all k that
lie within a given radius band of unit width are summed over.

In all calculations to follow the more general viscosity ν0(k) is replaced by the non-
dimensional viscosity ν̂. We then define the palinstrophy production and enstrophy
dissipation as

K(t) =
∑

k

k2Nk(t, t) (5.4a)

η(t) =
∑

k

ν̂k2Ck(t, t). (5.4b)

Following Frederiksen & Davies (2000) and Herring et al. (1974) we also define the
large-scale Reynolds number RL(t) and the skewness SK (t) by

RL(t) = Ê/
(
ν̂η1/3

)
(5.4c)

SK (t) = 2K/
(
P̂F̂1/2

)
, (5.4d)

where, the transient energy, enstrophy, and palinstrophy are given by

Ê(t) = 1
2

∑
k

Ck(t, t)/k2, (5.4e)

F̂(t) = 1
2

∑
k

Ck(t, t), (5.4f)

P̂(t) = 1
2

∑
k

Ck(t, t)k
2. (5.4g)

The skewness SK is a sensitive measure of the small-scale differences between the DNS
and QDIA closure, while RL provides a measure of the strength of the turbulence.

6. Numerical strategies
The numerical strategies that we use to solve the DNS and QDIA closure equations

are very similar to those described by Frederiksen et al. (1994) and Frederiksen &
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ζ (1, 0)14 ζ (2, 0)24 ζ (3, 0)34 ζ (1, −2)48 ζ (1, −1)54 ζ (2, −2)64 ζ (kx, ky )
label
degeneracy

C(1,0) C(2,0) C(3,0) C(1,−2) C(1,−1) C(2,−2) total

1.9634×10−7 6.8372×10−7 1.2664×10−6 2.6716×10−4 3.7414×10−7 1.1677×10−6 2.1523×10−3

〈ζ 〉〈ζ ∗〉(1,0) 〈ζ 〉〈ζ ∗〉(2,0) 〈ζ 〉〈ζ ∗〉(3,0) 〈ζ 〉〈ζ ∗〉(1,−2) 〈ζ 〉〈ζ ∗〉(1,−1) 〈ζ 〉〈ζ ∗〉(2,−2) total

1.1663×10−11 4.5713×10−10 8.9954×10−10 5.4295×10−8 1.0050×10−10 7.8884×10−12 2.6094×10−7

Table 1. Initial conditions for C3 calculations.

Davies (2000). Both the DNS and closure equations use the predictor–corrector
scheme for time-integration and the closure equations use the trapezoidal rule to
evaluate the time-history integrals as originally employed by Kraichnan (1964a). For
both the DNS and closure equations the interaction coefficients are precalculated as
dense single-dimensional arrays and the fields, cumulants and response functions are
calculated and stored for k in a half space, with complex conjugacy used to obtain
the complete functions.

The DNS results are averages over large numbers of realizations in which the
initial conditions are sampled from multivariate Gaussian distributions with specified
mean and variance. Initial DNS sampling errors are reduced using strategies such
as increasing the number of realizations in the ensemble and ensuring that for every
perturbation from the mean in the ensemble there is also a perturbation with same
structure but opposite sign. However, it should be noted that in time the nonlinearity
in the evolution equation results in a sampling error arising in the determination
of the DNS mean field. To illustrate this problem let us consider for example the
simplest case of isotropic homogeneous turbulence. Then it can be readily shown
that a non-zero mean field will evolve with time as the ensemble average in the DNS
calculations even when there is no inhomogeneity in the dynamical equations. This is
in contrast to the closure equations which maintain strict isotropy.

7. C3 resolution dynamics
In this section we examine the dynamics of the CUQDIA and QDIA closures

and make comparison with DNS at resolution C3 for which 1 � k � 3. As Kells
& Orszag (1978) noted, C3 has sufficient degrees of freedom to ensure that the
systems are mixing. The closure calculations and DNS start from an initial state
which is far from canonical equilibrium and for which the mean and transient (twice)
enstrophy components are shown in table 1. The choice of very weak initial mean
field components means that the evolved mean field is spun up as a direct result of
the interaction of the transient eddies with the topography. In order to make close
comparison with previous isotropic DIA C3 resolution calculations of Frederiksen
et al. (1994) we start with isotropic initial conditions and use an isotropic topography
with sprectrum given by (7.1). Thus, for the C3 resolution results (figure 1) the system
has 28 components with degeneracy (the number of system components with the same
transient enstrophy) given in table 1. The labels given to the components in table 1
are the same as shown in figure 1. The non-dimensional DNS and closure equations
have been scaled by typical meteorological time and space scales; we use a length
scale of half the earth’s radius, 3.185610×106 m, and a time scale of (

√
2Ω)−1 with the

earth’s angular velocity Ω =7.292 × 10−5 s−1. A single realization mean topography
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Figure 1. Comparison of DNS and closure results for the total fields in (a) (CUQDIA)
the forced dissipative study, (b) (QDIA) the inviscid unforced case, and (c) (QDIA) for the
dissipative case. Parameters are given in table 2.
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Figure �t ν̂ |hk|2 F 0
k 〈f 0

k 〉 a b

1(a) 2.2272 1.858 × 10−3 a + bk2

k2b2
2ν̂k2C

eq

k ν̂k2〈ζ eq

k 〉 −5.969 × 105 7.444 × 105

1(b) 8.9088 0
a + bk2

k2b2
0 0 −5.969 × 105 7.444 × 105

1(c) 2.2272 1.858 × 10−4 a + bk2

k2b2
0 0 −5.969 × 105 7.444 × 105

Table 2. Parameters for figure 1.

with amplitude squared

|hk|2 = (a + bk2)/(k2b2) (7.1)

is used. In this section all C3 DNS calculations represent an ensemble average over
5000 realizations with the initial real and imaginary parts of ζk(0) having a joint
Gaussian distribution. In the closure equations the cumulant update procedure starts
with Gaussian initial conditions for which the off-diagonal terms are zero. The non-
Gaussian and off-diagonal terms that build up with time are then used in the new
initial conditions for subsequent restarts as detailed in § 3. The choice of parameters
a and b (table 2) are comparable to those used by Frederiksen (1982) to study
barotropic atmospheric flows.

7.1. Forced-dissipative turbulent flow

The first case we consider is for forced dissipative flow. The random forcing has
variance determined by

F 0
k = 2ν̂k2C

eq

k , (7.2a)

with the mean forcing specified by〈
f 0

k

〉
= ν̂k2

〈
ζ

eq

k

〉
= − 1

2
bhkF

0
k . (7.2b)

Here the canonical equilibrium values for the transient enstrophy and mean vorticity
components are determined by

C
eq

k = k2/(a + bk2) (7.2c)〈
ζ

eq

k

〉
= −bhkC

eq

k (7.2d)

and this ensures that the system is forced to evolve towards canonical equilibrium.
The choice of topographic strength, (7.1), in combination with the specified forcing,
(7.2), ensures that the system evolves from an initial disequilibrium state (table 1) that
is dominated by transients to a canonical equilibrium state in which the mean and
transient enstrophy component amplitudes are equal.

In figure 1(a) we show the dynamical evolution over an 80-day integration for the
total enstrophy components with cumulant updates at every 5 days. The timestep
used is 1/4 day where 1 day has a non-dimensional value equal to 8.9088. The
numerical parameters are detailed in table 2. Close agreement between the closure
and DNS results is shown at all time periods as the system evolves from an initial
disequilibrium state toward canonical equilibrium under the effects of forcing and
dissipation. A comparison of the QDIA and CUQDIA results (not shown) indicates
close agreement (6 significant figures in the total enstrophy components). We also note
that an ensemble average of 5000 realizations in the DNS calculation cannot ensure
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exact isotropy in the 28 components of the C3 truncation resulting in a maximum
relative error in the enstrophy components of approx. 3% spread in simulations
(Frederiksen et al. 1994). The closures perform very well when both forcing and
dissipation are present. However, a more stringent test is to consider the performance
of the QDIA closure for inviscid unforced or viscous decaying flows. These cases are
discussed in the following subsection.

7.2. Inviscid unforced flow and viscous decaying turbulent flow

Figures 1(b) and 1(c) present analogous results to those in figure 1(a) but for inviscid
unforced flow and viscous decaying flow, respectively. These calculations are again
started with the same initial disequilibrium state as that used in the forced dissipative
calculation and are evolved over similar time periods. Details of the parameters used
are included in table 2. For both cases we use the QDIA closure without cumulant
updates. The closure clearly captures the initial growth and decay phase of the total
enstrophy components. This initial period out to day 20 is also when the mean
field is being generated. The moderate amplitude oscillations evident in the closure
between days 20 and 40 are very similar to those reported by Frederiksen et al. (1994)
in their study of closure theories for severely truncated two-dimensional isotropic
turbulence. These oscillations result in the QDIA closure very slightly underpredicting
the crossover time for the decaying enstrophy component (1,−2) and the two fastest
growing enstrophy components (3,0) and (2,−2). In general it is found that the QDIA
oscillations are somewhat reduced in amplitude relative to those present in the DIA
due to the presence of topography and mean-field. Since such oscillations are a
feature of the DIA it is reasonable to assume that they arise from inaccuracies in the
treatment of the triple cumulant term. The viscous decay calculation in figure 1(c),
was run with a timestep of 1/4 days in order to ensure stability over a 75-day time
period. The viscous decay run displayed similarly close agreement with DNS to that
seen in the inviscid unforced experiment (figure 1b) where a timestep of 1 day was
used over an 80-day period. Both cases are in close agreement with DNS in the
early (0–15 days) and later (+40 days) periods with slight difference only due to the
oscillatory phase in the closure occurring between days 15 and 40.

8. Very low Reynolds number turbulence
Next, we consider two cases of the viscous decay of flows at very low Reynolds

number (RL(0) � 0.02) and for resolutions C48 and C64. The purpose of these
experiments is to ascertain the validity of the quasi-diagonal closure approach for the
incorporation of topography and mean-field in a setting devoid of the effects of strong
turbulence. These studies will underpin our later investigations as we progressively
incorporate the effects of stronger turbulence for a variety of topographies. The two
cases considered in this section have the same topographic and transient fields but
with different mean fields and resolutions. The form of the topographic amplitude
considered in this section is given by (7.1) with random phase as in (2.5). All
parameters for cases I and II are specified in table 3. Throughout this section the
restart time is T = 10 for the cumulant update closure.

8.1. Case I

In figure 2(a–d) we show the results for viscous decay calculations at C48 resolution
with DNS and CUQDIA closure in which the initial disequilibrium field is constructed
by using (7.2c) and setting 〈ζk(0)〉 = −1/10 × bhk(k

2/(a + bk2)). The system is evolved
to a final time tf = 0.4. The initial mean kinetic energy field (figure 2a) is ≈ 2 orders
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Figure 2. Case I. Comparison of CUQDIA and DNS at C48 resolution for viscous decay
at very low Reynolds number. Throughout the evolved CUQDIA and DNS spectra are only
distinguishable at the smallest scales. Kinetic energy (left column); Palinstrophy (right column).
(a, c) Initial mean and transient fields. (b, d) Mean and transient fields at t =0.4. Component
field diagrams: mean field; DNS (dashed), CUQDIA (dotted): transient field; DNS (thick
solid), CUQDIA (thin solid). Case II. Viscous decay from an initial equilibrium state at C64
resolution. (e) Initial mean and transient kinetic energy. (g) Mean and transient kinetic energy
at t = 0.18. (h) The same calculation run out to t =0.4 now for C48 resolution where we
consider the component fields of the palinstrophy. In diagrams (e, g and h) the component
field diagrams are labelled as for (a)–(d). (f ) Total kinetic energy: initial (dashed), DNS (solid),
CUQDIA (dotted).
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Figure �t ν̂ Ck(0, 0) |hk|2 〈ζk(0)〉 a b

2(a–d) 0.004 0.005 C
eq

k

a + bk2

b2k2
0.1 × 〈ζ eq

k 〉 −5.969 × 105 7.444 × 105

2(e–h) 0.004 0.005 C
eq

k

a + bk2

b2k2
〈ζ eq

k 〉 −5.969 × 105 7.444 × 105

Table 3. Parameters for figure 2.

of magnitude weaker than the initial transient energy. Thus it is interesting to note
that as the total energy decays the mean and transient fields decay at approximately
the same rate (figure 2b). This is also seen in the diagrams depicting the evolution
of the palinstrophy fields (figures 2c and 2d). Throughout, the CUQDIA is in such
close agreement with DNS as to be indistinguishable apart from some very slight
difference between the transient fields at the very smallest scales.

8.2. Case II

The experiments with DNS and CUQDIA closure displayed in figure 2(e–h)
correspond to viscous decay from an initial canonical equilibrium state. The choice of
topographic amplitude and parameters (table 3) gives initial mean and transient fields
of equal magnitude. The system is now evolved to tf =0.18 at C64 resolution. As
previously in figure 2(a–d), we again see the component fields decaying at the same
rate (figure 2e, g and h). The initial and final large-scale Reynolds numbers are again
< 1. We note that the evolved C64 DNS and CUQDIA closure results in figure 2 are
virtually indistinguishable. In figure 2(h) the same calculation is performed at C48
resolution to a final time tf = 0.4 where we again have very close agreement between
all DNS and CUQDIA spectra but for some very slight under-representation of the
CUQDIA transients for 40 <k < 48. A further case of viscous decay from canonical
equilibrium with a weak small-scale topographic amplitude |hk|2 = 16k2/(1 + k3)2 (not
shown) with similar large-scale Reynolds numbers was also studied at C64 resolution;
again very close agreement between DNS and CUQDIA spectra was found for evolved
times out to tf =0.18.

9. Low Reynolds number turbulence
In the experiments of the previous section the Reynolds number was purposely

kept very low ( < 1) in order to test the quasi-diagonal closure performance in the
absence of strong turbulence effects. In this section we will consider low Reynolds
number turbulence (RL ≈ 60) making direct comparisons with the previous isotropic
turbulence studies of Herring et al. (1974) and Frederiksen & Davies (2000). Our initial
transient enstrophy spectrum corresponds exactly to spectrum A of Frederiksen &
Davies (2000) and closely to spectrum I of Herring et al. (1974). The initial transient
spectrum A (9.1a) is coupled to an initial mean vorticity field (9.1b):

(Spectrum A) Ck(0, 0) = 1.33 × 10−4k5 exp(−k2/32), (9.1a)

〈ζk(0)〉 = −bhk
k2

a + bk2
. (9.1b)

We consider two cases with topographic amplitudes whose squared values are
16k2/(1 + k3)2 (case AI) and 4/(1 + k)2 (case AII) respectively. In the first case the
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Figure 3. For caption see facing page.
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topography falls away as hk ≈ 1/k2 while in the second case it scales as hk ≈ 1/k.
These two cases represent significantly different small-scale topographic strengths and
initial mean fields. The parameters used are given in table 4. Cumulant updates are
at every 20 timesteps for the CUQDIA calculations in both cases. The DNS spectra
represent an ensemble average of 100 realizations with standard deviations (not
shown) comparable to those in figures 1, 3 and 4 of Frederiksen & Davies (2000).
The calculations start from Gaussian initial conditions for which the off-diagonal
elements of the two-point cumulants are zero. We use a non-dimensional viscosity of
ν̂ = 0.005 which gives an initial Reynolds number of RL � 62 for both DNS and the
closure. We compare the DNS and CUQDIA performance using the evolved kinetic
energy, palinstrophy, skewness and large-scale Reynolds number as diagnostics. The
choice of parameters a and b (table 4) are the same as Frederiksen & Sawford (1980)
used to fit the large scales of meteorological flows.

9.1. Case AI

We consider first case AI at C48 resolution for which the topography scales like 1/k2.
The mean and transient kinetic energy spectra for the initial conditions are shown
in figure 3(a). In figures 3(b) and 3(c) we compare the DNS and CUQDIA evolved
energy and palinstrophy spectra at t = 0.4, corresponding to 100 timesteps with a
non-dimensional timestep �t = 0.004. Although only half the time period considered
in the earlier isotropic studies of Frederiksen & Davies (2000) and Herring et al.
(1974), the system has undergone very significant evolution. The rapid development
of the flow fields can be attributed to the presence of both the topography and
mean-field.

A comparison of figures 3(b) and 3(c) with figure 1 of Frederiksen & Davies
(2000) and figures 18 and 19 of Herring et al. (1974) reveals a much more dramatic
and rapid increase in the total energy and palinstrophy at the smallest scales when
topography and a mean-field are present. In the early stages of the evolution this
would seem to be due to the relatively large amplitude 〈ζk(t)〉 and hk forcing the
tendency of the transients at the small scales rather rapidly via the Pk and πk terms
in the cumulant equation ((3.5) and (3.6)). However, in the later stages when the
transients dominate at all scales, it is primarily the transfer of energy from the
intermediate-scale transients that causes the subsequent growth in the small-scale
transients in a similar manner to the behaviour found in the isotropic studies of
Frederiksen & Davies (2000). In figures 3(b) and 3(c) the transient energy and
palinstrophy spectra have undergone rapid increase at the small scales, whereas the
mean energy and palinstrophy fields have evolved much less significantly. We see very
close agreement between the CUQDIA and DNS transient fields except at the very
smallest scales.

In figures 3(d) and 3(e) the DNS and CUQDIA skewness and large-scale Reynolds
number are compared. In figure 2(c) of Frederiksen & Davies (2000) it was shown
that the discrete closure resulted in a very much improved estimation of the skewness

Figure 3. Low Reynolds number spectra. The left column results are for case AI at C48
resolution and the right column results are for case AII at C64 resolution. (a, f ) Initial mean
and transient energy spectra. (b, g) Evolved mean and transient energy fields. (c,h) Mean and
transient palinstrophy spectra at t =0.4 and t = 0.45 respectively. Component field diagrams:
mean field; DNS (dashed), CUQDIA (dotted): transient field; DNS (solid), CUQDIA (thin
solid). (d , i) Skewness and (e, j ) RL(t)/RL(0) evaluated at time t . DNS (solid) and CUQDIA
(thin solid), with restarts calculated at every 20 timesteps. Parameters are given in table 1.
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Figure 4. Case BI, C48 resolution spectra. The initial mean and transient energy spectra
are depicted in (a) with the final evolved energy and palinstrophy fields shown in (b) and
(c), respectively. The component field diagrams are as follows: DNS mean-field (dashed),
CUQDIA mean-field (dotted), DNS transient-field (thick solid), CUQDIA transient-field (thin
solid). The skewness (d) and the large-scale Reynolds number (e) for DNS (thick solid) and
CUQDIA (thin solid).

in comparison to the continuous DIA closure (Herring et al. 1974a, figure 12).
For inhomogeneous flow over topography we see that the CUQDIA spectra have
rapidly evolved to much larger small-scale amplitude than for similar isotropic studies.
The final values are S

CUQDIA
K (0.4) = 0.25 as compared to SDNS

K (0.4) = 0.41. This result
gives an indication of the importance of the additional eddy-mean field and eddy-
topographic interactions not present in previous isotropic studies. A comparison of
the large-scale Reynolds number for DNS and the closure (figure 3e) reveals good
agreement throughout the evolution to tf = 0.4.
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Figure �t ν̂ |hk|2 a b

3(a–e) 0.004 0.005 16k2/(1 + k3)2 4.824 × 104 2.511 × 103

3(f –j ) 0.003 0.005 4/(1 + k2) 4.824 × 104 2.511 × 103

4(a–e) 0.003 0.0025 4k/(1 + k3) 4.824 × 104 2.511 × 103

Table 4. Parameters for figures 3 and 4.

9.2. Case AII

For case AII, we use a C64 resolution and a topography which scales like 1/k

resulting in a larger amplitude small-scale mean field. The mean and transient kinetic
energy spectra for the initial conditions are shown in figure 3(f ). The evolved kinetic
energy (figure 3g) and palinstrophy (figure 3h) spectra show that the mean field still
dominates the small scales at tf =0.45 (150 timesteps with �t = 0.003). We note that
there is close agreement between DNS and CUQDIA at all scales apart from slight
differences at the very largest scales with k =1 and 2.

The CUQDIA skewness in figure 3(i) depicts the typical cycle of growth and
decay following each update time discussed by Frederiksen & Davies (2000). The
CUQDIA skewness again underestimates the DNS skewness (SCUQDIA

K (0.45) = 0.98,
SDNS

K (0.45) = 1.30) but less so than for case AI with the weaker small-scale topography.
Again, the large-scale Reynolds number for the CUQDIA closure (figure 3j ) closely
matches the DNS results.

10. Moderate Reynolds number turbulence
Next we consider moderate Reynolds number turbulence and compare the

performance of the regularized CUQDIA (RCUQDIA) closure with DNS and the
CUQDIA closure. A range of cases with qualitatively different initial spectra are
examined. For cases BI and BIII the simulations and closure calculations start from
an initial transient spectrum, denoted spectrum B, which is specified by:

(Spectrum B) Ck(0, 0) = 1.8 × 10−1k2 exp
(
− 2

3
k
)
. (10.1a)

This spectrum is identical to Spectrum B of Frederiksen & Davies (2000) and is also
very similar to spectrum II of Herring et al. (1974) and has an initial large-scale
Reynolds number of ≈305. In case BI the initial mean contribution is determined by

〈ζk(0)〉 = −bhk
k2

a + bk2
, (10.1b)

with topographic amplitude squared of |hk|2 = 4k/(1 + k3) (case BI). In case BI
parameters a and b are again as in § 9 (see table 4). In cases BII and BIII the
topography has the form |hk|2 = 1.8 × 10−3 exp(− 2

3
k) while the initial mean fields are

not determined by an analytic form but are as shown in figures 5 and 6. For case
BII the initial transient spectrum is also not given by (10.1a) but is as shown in
figure 5(a). In all cases the phase of the topography is fixed but random as in (2.5).
Throughout this section the restart time is T = 20 for the cumulant update closures.

10.1. Case BI

The first study (case BI) we consider has the same initial transient kinetic energy
specified through Spectrum B. The topography (|hk|2 = 4k/(1 + k3)) and mean field
(10.1b) are dominant at the small scales while the transients dominate the large
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Figure 5. For caption see facing page.
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Figure 6. Case BIII. Comparison of DNS and RCUQDIA at C48 resolution for RL = 304.84.
(a) Initial mean (thin dashed) and transient (thin solid) kinetic energy. (b–d) Mean and transient
kinetic energy spectra at t =0.02, 0.04 and 0.2, respectively. Component field diagrams:
mean field; DNS (1000 member ensemble, thick dashed), RCUQDIA (thin dashed): transient
field; DNS (1000 member ensemble, thick solid), RCUQDIA (thin solid). (d) Skewness and
(e) RL(t)/RL(0). DNS (thick solid) and RCUQDIA (thin solid) with restarts calculated at
every 20 timesteps.

Figure 5. Case BII. Comparison of DNS with CUQDIA and RCUQDIA closures at C48
resolution. Parameters can be found in table 5. (a) Initial mean (thin dashed) and transient (thin
solid) kinetic energy. (b, f ) Mean and transient kinetic energy spectra at tf =0.4. (c, g) Mean
and transient palinstrophy spectra at tf = 0.4; Component field diagrams: mean field; DNS
(100 member ensemble, thick dashed: 1000 member ensemble, thick long dashed), CUQDIA
(thick dotted), RCUQDIA (thin dashed): transient field; DNS (100 member ensemble, thick
solid: 1000 member, thin long dashed), CUQDIA (thin dot dashed), RCUQDIA (thin solid).
(d ,h) Skewness and (e, i) RL(t)/RL(0) evaluated at time t . DNS (thick solid), CUQDIA (thick
dotted) and RCUQDIA (thin solid) with restarts calculated at every 20 timesteps.



156 T. J. O’Kane and J. S. Frederiksen

Figure �tCUQDIA �tDNS ν̂ |hk|2

5 0.004 0.002 0.002 1.8 × 10−3k2 exp
(
− 2

3
k
)

6 0.002 0.002 0.0025 1.8 × 10−3k2 exp
(
− 2

3
k
)

Table 5. Parameters for figures 5 and 6.

scales. In figure 4(a) the initial mean and transient spectra are displayed. At the
nondimensional time of tf =0.3 the evolved CUQDIA mean and transient kinetic
energy spectra (figure 4b) are shown to be in close agreement with DNS apart
for some slight underestimation of the closure transient field at the small scales.
The mean and transient palinstrophy spectra (figure 4c) show similar agreement
between DNS (100 realizations) and the closure transient fields, and highlight the
very close agreement in the respective mean fields. In figure 4(d) it is evident that
the closure skewness underestimates that of the DNS, but that the differences are
considerably less than without topography present as seen in comparison with figure 3
of Frederiksen & Davies (2000). The final evolved values are SDNS

K (0.3) = 1.379 and

S
CUQDIA
K (0.3) = 1.070, respectively. The Reynolds number in the closure evolves very

similarly to that of the DNS (figure 4e) with the final evolved values of RDNS
L (0.3) = 164

and R
CUQDIA
L (0.3) = 159. It is of note that for cases where the small-scale topography

is strong the closure and DNS evolved energy, palinstrophy and Reynolds number
agree very closely with DNS despite the closure underestimating the skewness by up
to 25%.

10.2. Case BII

For case BII, the conditions from which the simulations and closure calculations are
started are not given by an analytic form but the initial mean and transient kinetic
spectra are as shown in figure 5(a). Case BII has mean and transient kinetic energy
spectra which have broad similarities with typical atmospheric spectra (Boer &
Shepherd 1983). In particular, at large scales the mean flow dominates while at
intermediate and small scales the transients dominate the kinetic energy spectrum.
This situation continues as the flow evolves. These properties are in part related to the
choice of topography (table 5) that ensures strong mean-field topographic interactions
at large scales but negligible coupling at the smallest scales allowing the eddy–eddy
interactions to dominate there. For this initial state the large-scale Reynolds number
is RL � 202.

We have experimented with the choice of regularization parameters α1 and α2

in the RCUQDIA closure but will focus on results for α1 = 6, α2 = 3 (figure 5b–e)
and α1 = α2 = 4 (figure 5f –i). The choice α1 = 6, α2 = 3 was made to make direct
comparison with the regularized DIA (RDIA) studies of Frederiksen & Davies
(2003). They found that the performance of the RDIA and RCUDIA closures for
isotropic turbulence without a mean field was close to optimal with α1 = 6 and for
a variety of spectra with large-scale Reynolds numbers up to �4000. The choice of
α2 = 3 was then made on the basis of experimentation. This also suggested that a
one-parameter closure, with say α1 = α2 = 4, might perform as well for a wide variety
of flows provided the mean and transient fields were of comparable magnitudes.



Inhomogeneous closure theory 157

In figure 5 we compare the performance of the RCUQDIA closure for α1 = 6,
α2 = 3 and α1 =α2 = 4 with the results of DNS and CUQDIA closure calculations.
The statistics are evolved to tf =0.4 and the timesteps used for the closures and
DNS, as well as the viscosity in these viscous decay calculations, are given in table 5.
For the DNS we compare results for 100 and 1000 member ensembles in order to
examine the sampling problem of determining the mean field and variance which
was discussed in § 6. Figures 5(b) and 5(f ) compare the evolved kinetic energy
spectra and figures 5(c) and 5(g) the evolved palinstrophy spectra for the two DNS
calculations, the two RCUQDIA calculations and the CUQDIA results. We note that
the CUQDIA mean and transient spectra have too small amplitudes compared with
DNS at the smaller scales. In contrast, the RCUQDIA transient spectra, for both
choices of cutoff parameters, compare closely with the DNS ensemble averages for
both the 100 and 1000 member ensembles. In particular, the transient spectra for the
RCUQDIA for both pairs of cutoff ratios are nearly indistinguishable from the DNS
results. The RCUQDIA mean field also compares most closely to the 1000 member
ensemble DNS results at small scales, although there does appear to be a slight
over-estimation of the RCUQDIA mean field for the small scales. The differences
in the two DNS are due to the sampling problem with the DNS spectra flattening
out at small scales (figures 5f and 5g) where the mean field in the 100 member
DNS ensemble approaches the 1 percent sampling error barrier. In contrast, the 1000
member ensemble is better able to resolve the mean field at small scales.

Figures 5(d) and 5(h) show the evolution of the skewness for the closures and
DNS. We note that the RCUQDIA skewness, for both pairs of cutoff parameters,
is in excellent agreement with the DNS skewness. In contrast the CUQDIA
skewness is significantly less than for the DNS; at tf = 0.4 we find that SDNS

K = 0.86,

S
RCUQDIA
Kα1 = 6,α2 = 3

= 0.83, S
RCUQDIA
Kα1 =4,α2 =4

= 0.95 while S
CUQDIA
K = 0.32. Again, figures 5(e) and 5(f )

show that the regularized closures accurately predict the evolution of the DNS
Reynolds number, while the CUQDIA closure slightly overestimates the evolved
Reynolds number. At tf = 0.4 RDNS

L ≈ 223, R
RCUQDIA
Lα1 = 6,α2 = 3

≈ 233, R
RCUQDIA
Lα1 = 4,α2 = 4

≈ 229, while

R
CUQDIA
L ≈ 257.

10.3. Case BIII

We now consider case BIII where Ck(0, 0) is given by spectrum B and the initial
mean field and topography are as for the previous case, case BII. This set of initial
conditions again corresponds to an initial large scale Reynolds number of ≈ 305 with
the mean field dominating the very largest and very smallest scales. This choice of
initial conditions results in very rapid and complex evolution in both the small scale
transients and mean fields. For this case we have chosen to study the accuracy of
the closure in capturing this early period of rapid development. As for case BII, in
comparison to DNS optimal results were found for α1 = α2 = 4. The DNS results are
an average of 1000 realizations. In figure 6(a)–(d) we clearly observe the rapid transfer
of energy to the small-scale transients in the period to t =0.02 with little loss from the
small scales of the mean field. The subsequent evolution of the energy spectra shows
continuing transfer from the small scales of the mean field as the small-scale transients
grow. Throughout, the closure compares closely to DNS. In figures 6(e) and 6(f )
the closeness of the results are clear in the evolved skewness with S

RCUQDIA
Kα1 = 4,α2 = 4

= 0.82

comparing well to SDNS
K = 0.79. Similarly the final evolved R

RCUQDIA
Lα1 =4,α2 =4

= 287.5 is very

close to the DNS value RDNS
L = 287.0.
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10.4. Additional results

In addition to the cases discussed above a large number of numerical experiments
were conducted in order that a significant portion of parameter space be examined. Of
particular note a case intermediate between case BI and cases BII and BIII was also
studied. For this intermediate case the initial transient spectrum was again spectrum
B; however the mean contribution was determined by (10.1b) with a topography for
which |hk|2 = 16k2/(1+k3)2 and with all other parameters the same as for case BI (see
table 4). The QDIA closure without regularization was again found to underestimate
the evolved skewness and small-scale kinetic energy, while for the regularized QDIA
close agreement to DNS was once again found for α1 = α2 = 4. Importantly α1 = α2 = 4
was found to be almost universal over a large range of experiments for cases with
moderate Reynolds number and weak small-scale topography.

11. Discussion and conclusion
The performance of the QDIA closure for inhomogeneous turbulence over

topography has been examined and compared with the statistics of DNS for
resolutions 1 � k � kmax with kmax ranging from 3 (C3) to 64 (C64), and for a range of
Reynolds numbers between very low (RL < 1) and moderate (RL ≈ 300). Studies have
been performed for a wide range of initial conditions and topographies. We have also
formulated cumulant update closures, in which the time-history integrals in the QDIA
closure are periodically truncated and the off-diagonal two-point cumulant and the
three-point cumulant are used in the initial conditions of the restart procedure. The
cumulant update closure QDIA (CUQDIA) is much more efficient making long-time
integrations possible, and has similar performance to the QDIA closure provided the
restart or update time T is not too short. At moderate Reynolds number (RL ≈ 300) we
have also examined a regularized version of the CUQDIA closure (RCUQDIA). The
regularization localizes eddy–eddy, eddy-mean field and eddy-topographic interactions
between the large-scale and small-scale eddies depending on specified cut-off ratios
α1 and α2. The RCUQDIA closure almost universally compared most closely with
DNS for α1 = α2 = 4, thus producing a one-parameter inhomogeneous non-Markovian
theory for flow over topography. The RQDIA (resp. RDIA) is a one-parameter two-
time non-Markovian closure for inhomogeneous (resp. homogeneous) turbulence just
as the popular TFM (Kraichnan 1971a, b), EDQNM (Orszag 1970, 1973, Leith 1971)
and RTFM (Bowman & Krommes, 1997) are one-parameter single-time Markovian
closures for homogeneous turbulence. Regularization corresponds to a simple
empirical form of vertex renormalization which localizes transfers and ensures that
the decay time of the two-time cumulant and response functions at high wavenumber
are determined by local excitation levels (Kraichnan 1964c; Frederiksen &
Davies 2003). As a consequence the inability of the Eulerian DIA to distinguish
accurately between convection and distortion effects of small-scale eddies by large-
scale eddies is corrected resulting in improved small-scale spectra.

We have found that the dynamics and spectra of QDIA and CUQDIA closures
agree very closely with the statistics of DNS at very low Reynolds number and for
resolutions ranging from C3 to C64. In particular, the time evolution of enstrophy
components at C3 resolution has demonstrated that the QDIA and CUQDIA are
in close agreement and also more closely match DNS results in the early period
of growth and oscillatory behaviour of the modes than found in related isotropic
DIA calculations (see Frederiksen et al. 1994). These results have been established in
forced-dissipative, viscous decay and inviscid unforced calculations. Further viscous



Inhomogeneous closure theory 159

decay experiments at higher C48 and C64 resolutions and at very low Reynolds
numbers have established close agreement between closures and DNS. Thus, when
turbulence is weak, the quasi-diagonal approximation (Frederiksen 1999) for the
incorporation of topography and mean-field in closure models performs extremely
well.

Our low Reynolds number runs (RL ≈ 60) have examined the viscous decay of
turbulence in two cases with the same transient spectra but with different small-
scale topographic amplitudes and initial mean fields. In the first case, case AI, the
topography scales like 1/k2 while in the second, case AII, it falls off more slowly like
1/k and the mean fields have corresponding behaviour.

For case AI, at resolution C48, the evolved kinetic energy and palinstrophy spectra
for the CUQDIA closure are found to compare closely with DNS results except for
a slight overestimation at the smallest scales (k � 35) despite the CUQDIA closure
underpredicting the evolved skewness. The evolution of the transient small-scale
spectra is much more rapid when topography and a mean field are present than
in corresponding isotropic turbulence calculations of Frederiksen & Davies (2000)
and Herring et al. (1974). This appears to be due to the topography and mean
field rapidly forcing the tendency of the small-scale transients in the early stages of
evolution.

For case AII, at resolution C64, the mean field still dominates the kinetic energy
and palinstrophy spectra at small scales at the end of the time period of interest
(tf = 0.45). In this case there is close agreement between CUQDIA and DNS spectra
at most scales. Here the agreement between the CUQDIA and DNS also extends more
closely to the skewness which is a very sensitive measure of small scale differences.
For both cases AI and AII the evolution of the large-scale Reynolds number for the
closure closely follows that of the DNS.

The results for cases AI and AII show that in the presence of significant amplitude
small-scale mean fields and topography, the underestimation of small-scale kinetic
energy that is characteristic of the Eulerian DIA closure (Herring et al. 1974;
Frederiksen & Davies 2000), is reduced. This appears to be due to the fact that the
quasi-diagonal approximation is then more successful in representing the off-diagonal
elements of the two-point cumulants and this tends to offset the misrepresentation
of the three-point cumulant by the Eulerian DIA. This may be seen from (3.6),
where significant nonlinear noise and damping terms associated with eddy–mean field
and eddy–topographic interactions may compensate for errors in the nonlinear noise
and damping from eddy–eddy interactions. This compensation, as noted above, is
most effective for case AII where the mean field kinetic energy spectrum is flatter.
Then there is less difference between decay times determined by the mean field
energy containing range and local excitation levels. This is confirmed by case BI
where for strong small-scale topographic amplitude the small-scale kinetic energy
and palinstrophy were found to compare very closely to DNS at moderate Reynolds
number. Thus for the closure equations strong small-scale mean-field and topographic
amplitudes result in increased verisimilitude.

The results of cases AI, AII & BI suggest that in the Eulerian QDIA the behaviour
of the nonlinear damping and noise terms associated with eddy–mean field and eddy–
topographic interactions results in the close comparison between DNS and CUQDIA
closure fields at all scales despite the closure underestimating the evolved skewness.
In cases where the flow is dominated by mean spectra that are nearly flat, then there
is little difference between the local excitation levels and the energy containing range
as far as determining de-correlation times in the equation for the two-time cumulant.
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However, for cases at moderate and higher Reynolds numbers where the small-scale
mean-field and topographic amplitudes are weak, it is expected, and subsequently
confirmed, that the closure underestimates the evolved small scales in addition to
more significant underestimation of the evolved skewness. These considerations
led us to implement an empirical vertex renormalization procedure in which the
eddy–mean field and eddy–topographic interactions, like the eddy–eddy transfer, are
localized. This localization, or regularization as it has been termed by Frederiksen &
Davies (2003), consists of zeroing the interaction coefficients K(k, p, q) and A(k, p, q)
(2.4) in the two-time cumulant and response function equations unless the triad of
interacting wave vectors satisfies certain inequalities depending on cutoff ratios α1

and α2.
The effectiveness of the regularization procedure in improving the small-scale

amplitudes of kinetic energy and palinstrophy spectra for the CUQDIA closure
has been tested for viscous decay of turbulence, starting from a variety of initial
spectra. In particular two cases (BII and BIII) were studied at moderate large-
scale Reynolds number (RCase BII

L � 200 & RCase BIII
L � 300) with the regularized closure

performing very well. The findings have largely been presented for cutoff parameters
α1 = α2 = 4, with the choice α1 = 6, α2 = 3 found to give very similar results in
case BII.

For case BII, the initial conditions have mean and transient kinetic energy spectra
that have broad similarities with atmospheric spectra. At large scales the mean
kinetic energy dominates, while at small scales it is the transients and this remains
the situation as the turbulence evolves to the final time (tf = 0.4). The RCUQDIA
closure, for both pairs of cutoff parameters, does a remarkable job in reproducing
the evolved DNS kinetic energy and palinstrophy spectra, skewness and Reynolds
number. This is in contrast to the CUQDIA closure, where mean and transient
spectra have too small amplitude for k > 20 and the evolved skewness is less than
40% of the correct value. For this case we have also studied the sampling error in
resolving the mean field when its magnitude is considerably less than the transients
finding that an ensemble average of 1000 realizations was the minimum required to
resolve the small-scale DNS mean field.

In case BIII we observe that the closure very accurately captures the early dynamics
of the flow in a situation where there is rapid and significant transfer of energy from
large to small scales and between mean and transient fields. Despite the very rapid
evolution of the small-scale transients the regularized closure captures the evolution
of the skewness and large-scale Reynolds number extremely accurately.

Our general results are also consistent with the DNS study of Bretherton &
Haidvogel (1976), who found that in the presence of weak dissipation turbulent eddies
over topography decay through a sequence of minimum enstrophy states for which
the potential vorticity is proportional to the streamfunction. Carnevale & Frederiksen
(1987) established the close relationship between minimum enstrophy states and
canonical equilibrium states with maximum entropy. Holloway (1978) similarly found
that for two-dimensional decaying topographic turbulence the mean vorticity flow
was strongly anti-correlated to the topography with anti-cyclonic circulation around
the hills and that after a period of strong development further energy transfer was
suppressed and the mean and transient fields subsequently entered a period of steady
decay.

In summary, we have performed a wide range of numerical experiments with the
QDIA-type closures and shown that they are computationally tractable at reasonable
resolutions in cumulant update form, and also accurate at very low to low Reynolds
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numbers. At moderate Reynolds numbers, the QDIA closures tend to underestimate
the magnitude of the small-scale transients, particularly for flows with weak mean
fields and topographic amplitudes. This is related to inaccuracies in the representation
of nonlinear noise and damping terms in the Eulerian QDIA associated with eddy–
eddy, eddy–mean field and eddy–topographic interactions between large and small
scales. These deficiencies can however be largely overcome by a regularized form of
the CUQDIA closure in which transfers are localized in wavenumber space through
specified cutoff parameters. We have found excellent agreement between a one-
parameter form of the RCUQDIA closure and DNS results for turbulent flows with
properties broadly similar to atmospheric spectra. This suggests that the regularized
inhomogeneous QDIA closure may be sufficiently accurate to be applied to practical
problems in geophysical fluids including the subgrid scale parameterization problem
and the problem of predictability discussed in the Introduction.
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Appendix A. Derivation of two-point restart terms
Let us now derive in detail the two-point restart terms using a perturbative

approach. Suppose we expand ζ̂k in a perturbation series

ζ̂k(t) = ζ̂ 0
k (t) + λζ̂ 1

k (t) + . . . , (A 1)

where the right-hand side terms are multiplied by the small expansion parameter λ.
To zero order we have from (2.3)(

∂

∂t
+ ν0(k)k2

)
ζ̂ 0

k (t) = f̂ 0
k(t) + δ(t − t0)ζ̂

0
k (t0) (A 2)

with formal solution in terms of the Green function R0
k,k(t, s)

ζ̂ 0
k (t) = R0

k,k(t, t0)ζ̂
0
k (t0) +

∫ t

t0

ds R0
k,k(t, s)f̂

0
k(s). (A 3)

To order λ we have(
∂

∂t
+ ν0(k)k2

)
ζ̂ 1

k (t) =
∑

p

∑
q

δ(k + p + q)A(k, p, q)ζ̂ 0
− ph−q

+
∑

p

∑
q

δ(k + p + q)K(k, p, q)
[
ζ̂ 0

− pζ̂
0
−q −

〈
ζ̂ 0

− pζ̂
0
−q

〉]
+

∑
p

∑
q

δ(k + p + q) 1
2
(A(k, p, q) + A(k, q, p))

×
[
〈ζ− p〉ζ̂ 0

−q + 〈ζ−q〉ζ̂ 0
− p

]
+ δ(t − t0)ζ̂

1
k (t0). (A 4)

Thus

ζ̂ 1
k (t) = ζ̂

1(QDIA)
k (t) + R0

k,k(t, t0)ζ̂
1
k (t0), (A 5)
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where

ζ̂
1(QDIA)
k (t) =

∫ t

t0

dsR0
k,k(t, s)

[ ∑
p

∑
q

δ(k + p + q)A(k, p, q)ζ̂ 0
− p(s)h−q

+
∑

p

∑
q

δ(k + p + q)K(k, p, q)
[
ζ̂ 0

− p(s)ζ̂
0
−q(s) −

〈
ζ̂ 0

− p(s)ζ̂
0
−q(s)

〉]
+

∑
p

∑
q

δ(k + p + q) 1
2
(A(k, p, q)

+ A(k, q, p))
[
〈ζ− p(s)〉ζ̂ 0

−q(s) + 〈ζ−q(s)〉ζ̂ 0
− p(s)

]]
. (A 6)

We now similarly expand the two-time cumulant in a perturbation series

C
QDIA
k,−l (t, t ′) = 〈ζ̂k(t)ζ̂−l (t

′)〉

=
〈
ζ̂ 0

k (t)ζ̂ 0
−l (t

′)
〉

+ λ
〈
ζ̂

1(QDIA)
k (t)ζ̂ 0

−l (t
′)
〉

+ λ
〈
ζ̂ 0

k (t)ζ̂ 1(QDIA)
−l (t ′)

〉
+ . . . (A 7)

Then assume that the initial ζ̂k(t0) have a multivariate Gaussian distribution, so that

〈ζ̂k(t0)ζ̂−l (t0)〉 = δkl〈ζ̂k(t0)ζ̂−k(t0)〉. (A 8)

The further assumption of diagonal dominance imposes the following property on
the zero order transient fields〈

ζ̂ 0
k (t)ζ̂ 0

−l (t
′)
〉
= δkl

〈
ζ̂ 0

k (t)ζ̂ 0
−k(t

′)
〉

(A 9)

so that to zero order
C0

k,−l (t, t
′) = δkl

〈
ζ̂ 0

k (t)ζ̂ 0
−k(t

′)
〉
, (A 10)

to first order

C
1(QDIA)
k,−l (t, t ′) =

〈
ζ̂

1(QDIA)
k (t)ζ̂ 0

−l (t
′)
〉

+
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〉
(A 11)

and

C1
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−l (t0)

〉
=

〈
ζ̂

1(QDIA)
k (t)ζ̂ 0

−l (t
′)
〉

+
〈
ζ̂ 0

k (t)ζ̂ 1(QDIA)
−l (t ′)

〉
+ R0

k,k(t, t0)R
0
−l,−l (t

′, t0)Ck,−l (t0, t0)

= C
1(QDIA)
k,−l (t, t ′) + R0

k,k(t, t0)R
0
−l,−l (t

′, t0)Ck,−l (t0, t0). (A 12)

We now renormalize (A 12); that is λ → 1, R0
k,k → Rk,k, C0

k,−k → Ck,−k and C1
k,−l →

Ck,−l with Ck,−l (t0, t0) = 〈ζ̂k(t0)ζ̂−l (t0)〉. Thus we have for t � t ′ � T

Ck,−l (t, t
′) =

∫ t

T

ds Rk,k(t, s)C−l,l (t
′, s)[A(k, −l, l − k)hk−l

+ (A(k, −l, l − k) + A(k, l − k, −l))〈ζk−l (s)〉]
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+

∫ t ′

T

ds Ck,−k(t, s)R−l,−l (t
′, s)[A(−l, k, l − k)hk−l

+ (A(−l, k, l − k) + A(−l, l − k), k)〈ζk−l (s)〉]
+ Rk,k(t, T )R−l,−l (t

′, T )Ck,−l (T , T ),

= C
(QDIA)
k,−l (t, t ′) + Rk,k(t, T )R−l,−l (t

′, T )Ck,−l (T , T ). (A 13)

For t = t ′ = T , using the reduced notation of (3.2b) and a reordering of the wavevectors,
we find that

C− p,−k(T , T ) =

∫ T

t0

ds R− p(T , s)C−k(T , s)
[
A(− p, −k, k+ p)h(−k− p) +(A(− p, −k, k+ p)

+ A(− p, k + p, −k))
〈
ζ(−k− p)(s)

〉]
+

∫ T

t0

ds R−k(T , s)C− p(T , s)

×
[
A(−k, − p, k + p)h(−k− p) + (A(−k, − p, k + p) + A(−k, k

+ p, − p))
〈
ζ(−k− p)(s)

〉]
+ R− p(T , t0)R−k(T , t0)C− p,−k(t0, t0), (A 14)

which is equivalent to (3.10a), namely

K̃
(2)
− p,−k(T , T ) = K

(2)Dyn

− p,−k (T , T ) + K̃
(2)
− p,−k(t0, t0)R− p(T , t0)R−k(T , t0), (A 15)

where K
(2)Dyn

− p,−k (t, t
′) = C

(QDIA)
− p,−k (t, t ′).
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